Linear and nonlinear methods for model reduction

Diane Guignard

Abstract

We consider model reduction methods for the approximation of multivariate analytic functions in the case where the functions depend on infinitely many variables but present a certain anisotropy. The usual approach to model reduction is to construct a low dimensional linear space V_n and define the approximation as some projection into V_n . In such cases, the construction of one suitable linear space V_n is not feasible numerically, for instance if the target accuracy is too small. It is well-known that nonlinear methods, such as adaptive or best nterm approximations, provide improved efficiency. The idea of then to replace V_n by a collection of linear spaces (aka a library) V_1, \ldots, V_N of dimension m < n.

In this talk, we first introduce various anisotropic model classes based on Taylor expansions and study their approximation by finite dimensional polynomial spaces P_{Λ_n} described by lower sets Λ_n of cardinality *n*. Then, in the framework of parametric PDEs, we present a possible strategy that can be used to built a library and provide an analysis of its performance.

This is a joint work with: A. Bonito, A. Cohen, R. DeVore, P. Jantsch, and G. Petrova.